How Netflix Provisions
Optimal Cloud Deployments

of Cassandra

Joey Lynch
Senior Software Engineer
Cloud Data Engineering - Netflix

Speaker Joey Lynch

Senior Software Engineer
Cloud Data Engineering at Netflix

Database shepherd and data wrangler

ACTE&

G B

https://iolynch.github.io/

https://jolynch.github.io/

Show me the
Code!

Service Capacity Modeling

A generic toolkit for modeling capacity requirements in the cloud. Pricing information included in this repository are
public prices.

https://qithub.com/Netflix-Skunkworks/service-capacity-modelin N

https://github.com/Netflix-Skunkworks/service-capacity-modeling

Outline

Understanding Hardware
Computers are shaped differently
Computers cost money

Capacity Planning

Requirement Language

Capacity Planning - Queues oh my
Cassandra Capacity Planning Model

Monitoring your Choices
Key Capacity Metrics to Monitor

Capacity
Planning
101

M(D, H, PL) — C

M = Workload Capacity Model

D = User Desire

H = Hardware Profile

PL = Current Pricing and Lifecycle
C = Candidate Cluster

Under- oot
' ¥
standing S

~
N

4 N
SANRAS

N
~
—~

i

Hardware

Capacity
Planning
101

M(D, H, PL) — C

M = Workload Capacity Model

D = TUser Desire

H = Hardware Profile

PL = Current Pricing and Lifecycle
C = Candidate Cluster

Hardware

Amazon EC2 Instance
Comparison

Hundreds of
choices

With confusing
names

No indication of
lifecycle (alpha,
beta, stable,
deprecated)

https://www.ec2instances.info/
https://www.ec2instances.info/

Hardware

silter: Min Memory (GiB): 0 MinvCPUs:| 0 | Min Memory/\CPU (Gibivcp| 1-year - No Upfront

1-year - Partial Upfront

Search:
Name API Name 1-year - Full Upfront vCPUs Instance Storage Network Performance Linux On Demand cost Linux Reserves Linux Spot Minimum cost
Search | [msd.2x W 4 3-year - No Upfront Search Search [search | [search | [search Search
3-year - Partial Upfront
M5 General Purpose Double Extra Large m5d.2xlarge 320GiB 8VvCPUs 300 GiB NVMe SSD Up to 10 Gigabit $3959.520000 annually $1488.665640 annually $1899.168000 annually
-year - Full Upfront
Different Prices / 1-year convertible - No Upfront

Why? Because it's frustrating to compare instances using Amazon's own instance| 1-year convertible - Partial Upfront

Who? It was started by @powdahound, contributed to by many, is now managed ¢ 1"Year convertible - Full Upfront 5 improvements on GitHut
How? Data is scraped from multiple pages on the AWS site. This was lastdone at > Y°%" comvestible - No Uplront

Not Entirely Accurate
3-year convertible - Partial Upfront

Warning: This site is not maintained by or affiiated with Amazon. The data shown nt. Please report issues you see.

This changes every minute

3-year convertible - Full Upfront

Relevant information to the choice changes rapidly and is
not always accurate.

Problem

MD, H, PL) —» C We do not have accurate

hardware profiles
M = Workload Capacity Model
D User Desire

H = Hardware Profile
PL = Current Pricing and Lifecycle “ We do not knO\.’V. o
C = Candidate Cluster company specific pricing

and lifecycle information

Solution?

Find the instance type labeled
"database class" and buy that

Solution?

Find the instance type labeled
"database class" and buy that

Search for conference talks by "big
users" and use whatever they use.

Solution?

Find the instance type labeled
"database class" and buy that

Search for conference talks by "big
users" and use whatever they use.

We can do better

Hardware Capacity: How much CPU, RAM,
Network, Disk?

Latency: How fast are the CPUSs,
NICs, and Drives?

Lifecycle: Is this alpha or stable?

Price: How much do | pay?

Hardware

You can measure these

This depends on your deployment

Hardware . .
Lifecycle Would friends let friends launch on m3

instances?

Does your software stack work on
armo4?

Hardware
Lifecycle

Alpha: Hardware preview (m6g)
At Netflix Beta: Production testing (r5dn)
Stable: Use in production (m5)
Deprecated: Stop using (i3 -> i3en)

End-of-life: Do not use (m3,i2, ...)

| https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/main/service_capacity_modeling/interface.py#L116-L131 N

https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/ee48f8185c86123fb64edf833971181c2e4798ea/service_capacity_modeling/interface.py#L116-L131

Solution! We can know!

Enumerate Hardware Shapes
Measure their performance

https://github.com/Netflix-Skunkworks/service-capacity-modeling/tree/main/service_capacity_modeling/hardware/profiles

https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/main/service_capacity_modeling/hardware/profiles/shapes/aws.json
https://github.com/Netflix-Skunkworks/service-capacity-modeling/tree/main/service_capacity_modeling/hardware/profiles

Solution!

We can know!

Enumerate Hardware Shapes
Measure their performance

Enrich with context!

Layer on pricing and lifecycle

https://github.com/Netflix-Skunkworks/service-capacity-modeling/tree/main/service_capacity_modeling/hardware/profiles

https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/main/service_capacity_modeling/hardware/profiles/shapes/aws.json
https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/main/service_capacity_modeling/hardware/profiles/pricing/aws/3yr-reserved.json
https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/main/service_capacity_modeling/interface.py#L116-L131
https://github.com/Netflix-Skunkworks/service-capacity-modeling/tree/main/service_capacity_modeling/hardware/profiles

Solution!

How do we measure?

Generate Load (iperf, ndbench,
netperf, fio)

Measure (bcc, metrics, etc..)
How do we price?

Layer company pricing on top of
shape definitions

https://iperf.fr/
https://github.com/Netflix/ndbench
https://github.com/HewlettPackard/netperf
https://github.com/axboe/fio
https://github.com/iovisor/bcc
https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/main/service_capacity_modeling/hardware/__init__.py#L26-L67

Solution!

For a concrete example let's model a m5d drive which we model with an io latency distribution. Data for comparision comes from using biosnoop and

histogram.py

$ sudo /us
$ grep Sha

on a Cassandra server (the threads that are servicing reads are from the SharedPool).

r/share/bcc/tools/biosnoop > ios
redPool ios | tr -s * ' | cut -f 8 -d ' ' > 10 lat

$ cat io lat | histogram.py -1 -p
NumSamples = 107517; Min = 0.06; Max = 2.43

Mean = 0

.118898; Variance = 0.002304; SD = 0.048005; Median 0.100000

each m represents a count of 569

0.0600
0.0623
0.0670
0.0762
0.0948
i (39.72%
0.1318
0.2060
0.3542
0.6508
1.2438

- 0.0623 [94]: (0.09%)

- 0.0670 [0]: (0.00%)

- 0.0762 [505]: (0.47%)

- 0.0948 [33459]: wunENENNRNNRNNNNNRNNNNNNNNNRNNNNNNNNNNNNNNNNNRNNNRNENRNERNE (31.12%)

- 0.1318 [42706]: mumuNERRRNRNRNNRNRNRNNNNRNN NN NN NN NN R NN RN RNRRNRNE
)

- 0.2060 [29154]: mumuENENENNENRNNRNRNNNNNNRNNNNNNNNNNNRNNRNRRRRRNRNEEE (27.12%)

- 0.3542 [994]: m (0.92%)

- 0.6508 [523]: (0.49%)

- 1.2438 [77]1: (0.07%)

- 2.4300 [5]: (0.00%)

https://dithub.com/Netflix-Skunkworks/service-capacity-modeling/blob/main/notebooks/drive_latency.ipynb N

https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/main/notebooks/drive_latency.ipynb

Solution!

io_latency/m5d_cass_io_lat

Probability Density
15
o

0.05 3 015
Read |0 Latency (ms)

io_latency/gp2_cass_io_lat

—— PDF: {low=0.08, mid=0.11, high=0.16}
e simulated
real data

20 A

Probability Density

0.5 A

-
w

=
o

0.0

10
Read |10 Latency (ms)

= PDF: {low=0.4, mid=1.05, high=1.5}
e simulated
real data

Solution! $ iperf3 -c -P $(getconf _NPROCESSORS_ONLN) -p 8888 -t 3600
Connecting to host 100.67.65.24, port 8888
[4] local port 25344 connected to port

[6] local port 25346 connected to port
[8] local port 25348 connected to port
[10] local port 25350 connected to port
[12] local port 25352 connected to « port
[
[
[

$ iperf3 -s -p 8888

14] local port 25354 connected to R port
16] local port 25356 connected to port
18] local port 25358 connected to i port

Interface Throughput

8.006

6.006 -

PDT: ©9:39 - Wednesday, Sep 15 2621
e in: 2.506
e out: 2.56G
Press + hold ctrl to view raw numbers

bits/second

4.006

2.006

09:38 69:48
Filter:

Visibilit

09:16 60:18 09:20 09:22 89:24 80:26 89:28 89:30 89:32

Record Baseline NOT Burst

Solution!

{

cat service capacity modeling/hardware/profiles/shapes/aws.json | jq '.instances["m5d.4xlarge"]’

: 16,

G (1 18

CPU Count and Frequency

Actual Memory and Network

Actual Disk and Disk Latency

https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/main/service_capacity_modeling/hardware/profiles/shapes/aws.json

Solution!

cat service capacity modeling/hardware/profiles/pricing/aws/3yr-reserved.json | jq '.["us-east-1"].instances["m5d.4xlarge"]"

1 2977.7
cat service capacity modeling/hardware/profiles/pricing/aws/3yr-reserved.json | jq '.["us-east-1"].drives'

R |

12 [Your prices

: 0.96,
1 0.005

}

cat service capacity modeling/hardware/profiles/pricing/aws/3yr-reserved.json | jq '.["us-east-1"].services'

{
. There are relevant

services other than drives

Solution!

cat service capacity modeling/hardware/profiles/pricing/aws/3yr-reserved.json | jq '.["us-east-1"].instances["m5d.2xlarge"]"'

¢ 1488.6,

cat service capacity modeling{hardware/profiles/pricing/aws/3yr-reserved.json | jq '.["us-east-1"].instances["r5n.2xlarge"]"'

: 1840.3,

cat service capacity modeling/har i ricing/aws/3yr-reserved.json | jq '.["us-east-1"].instances["i3.2xlarge"]"'

: 2312,

Company specific lifecycle

Capacity
Planning
201

M
D
H
PL
C

M(D, H, PL) —» C

Workload Capacity Model
User Desire

Hardware Profile

Current Pricing and Lifecycle
Candidate Cluster

We need a unified language for
talking about requirements

\ A
O

~
N

/ AN
SARERS

N
~
—~

i

User Input The user probably knows how much

CPU, RAM, Network, Disk space, and
Disk 10s they need

User Input The user probably knows how much
CPU, RAM, Network, Disk space, and
Disk 10s they need

They probably don't

User Input

The user probably knows how much
CPU, RAM, Network, Disk space, and
Disk 10s they need

They probably don't

Well they must know how much traffic
they will send, how big their data is?

User Input

The user probably knows how much
CPU, RAM, Network, Disk space, and
Disk 10s they need

They probably don't

Well they must know how much traffic
they will send, how big their data is?

They probably don't

User Input

We will never know the truth

User Input

The user probably knows how much
CPU, RAM, Network, Disk space, and
Disk 10s they need

They probably don't

Well they must know how much traffic
they will send, how big their data is?

They probably don't know exactly

Intervals Spanning 0-10000
I nte rva Is —— Left Skew [P:=100, p=1000, Pss=9900]
—— Centered [P1=100, p=5000, pss=9900]
—— Right Skew [P.=100, p=9000, P:s=9900]
—— Shift Left [P.=2000, p=3000, Pss=4000]
0.0008
0.0006
g
EE 0.0004
0.0002
0.0000 _—

0 2000 4000 6000 8000 10000
left skew = Interval(minimum_ value=0, low=100 , mid=1000, high=9900, maximum value=10000, confidence=0.98)
right skew = Interval(minimum value=0, low=100 , mid=9000, high=9900, maximum value=10000, confidence=0.98)
center = Interval(minimum_ value=0, low=100 , mid=5000, high=9900, maximum value=10000, confidence=0.98)
shift = Interval(minimum_ value=0, low=2000, mid=3000, high=4000, maximum_ value=10000, confidence=0.98)

https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/main/service_capacity_modeling/stats.py#l 90-1L.138

https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/0bdd2bd9f74213da8830352da1a4938d07350a98/service_capacity_modeling/stats.py#L90-L138

Capacity Desires

critical is this cluster, impacts how much "extra" we provision
Critical to the product (Product does not function)

Important to product with fallback

User experience degraded)

(
Care about it but don't wake up (Internal apps)
(

Do not care
service tier: int =1

How will the service be queried

query pattern: QueryPattern = QueryPattern()

What will the state look like
data shape: DataShape = DataShape()

When users are providing latency estimates,

instance core frequency we are comparing to.

hence this default
core reference ghz float 253

Testing)

what 1is the typical
Databases use i3s a lot

https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/4fa8c600fa2cf12dc75735539d3b115a9cefe93d/service_capacity_modeling/interface.py#L448-L465

Capacity Desires

How critical is this cluster, impacts how much "extra" we provision
0 = Critical to the product (Product does not function)
Important to product with fallback (User experience degraded)
Care about it but don't wake up (Internal apps)
Do _not care (Testing)

service tier: int =1

How will the service be queried
query pattern: QueryPattern = QueryPattern()

What will the state look like
data shape: DataShape = DataShape()

When users are providing latency estimates, what is the typical

instance core frequency we are comparing to. Databases use i3s a lot
hence this default

core reference ghz float 253

https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/4fa8c600fa2cf12dc75735539d3b115a9cefe93d/service_capacity_modeling/interface.py#L448-L465

Service Tier How sad are you if this cluster fails?

(((,A\
< N

- P

& ¢y

Tier3=35 > N

=
® O
- =
- O
| . |

-
®
-
N
1
|

Query Pattern

Will the service primarily be accessed in a latency sensitive mode
(aka we care about P99) or throughput (we care about averages)
access pattern: AccessPattern = AccessPattern.latency

access consistency: GlobalConsistency = GlobalConsistency()

A main input, how many requests per second will we handle
We assume this is the mean of a range of possible outcomes
estimated read per second: Interval = certain int(0)
estimated write per second: Interval = certain int(0)

A main input, how much on cpu_time per operation do you take.

This depends heavily on workload, but this is a generally ok default
For a Java app (C or C++ will generally be about 10x better,

python 2-4x slower, etc...)

estimated mean read latency ms: Interval = certain float(1)
estimated mean write latency ms: Interval = certain float(1)

For stateful services the amount of data accessed per

read and write impacts disk and network provisioning

For stateless services it mostly just impacts memory and network
estimated mean read size bytes: Interval = certain int(AVG ITEM SIZE BYTES)
estimated mean write size bytes: Interval = certain int(AVG _ITEM SIZE BYTES

The latencies at which oncall engineers get involved. We want
to provision such that we don't involve oncall
Note that these summary statistics will be used to create reasonable
distribution approximations of these operations (yielding p25, p99, etc)
read latency slo ms: FixedInterval = FixedInterval(
low=0.4, mid=4, high=10, confidence=0.98
)
write latency slo ms: FixedInterval = FixedInterval(
low=0.4, mid=4, high=10, confidence=0.98
)

How is it queried?
read/write
sizing
latency

Provide defaults from
the model

Inputs are Intervals

| https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/service_capacity modeling/interface.py#L.372-L.405

https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/4fa8c600fa2cf12dc75735539d3b115a9cefe93d/service_capacity_modeling/interface.py#L372-L405

Data Shape

estimated state size gib: Interval = certain int(0)
estimated state item count: Optional[Interval] = None
estimated working set percent: Optional[Interval] = None

How compressible is this dataset. Note that databases might offer
better or worse compression strategies that will impact this

Note that the ratio here is the forward ratio, e.g.

A ratio of 2 means 2:1 compression (0.5 on disk size)

A ratio of 5 means 5:1 compression (0.2 on disk size)
estimated compression ratio: Interval = certain float(1)

How much fixed memory must be provisioned per instance for the
application (e.g. for process heap memory)
reserved instance app mem gib: int = 2

How much fixed memory must be provisioned per instance for the
system (e.g. for kernel and other system processes)
reserved_instance system mem gib: int =1

How durable does this dataset need to be. We want to provision
sufficient replication and backups of data to achieve the target
durability SLO so we don't lose our customer's data. Note that
This is measured in orders of magnitude. So
1000 =1 - (1/1000) = 0.999
10000 =1 - (1/10000) = 0.9999
durability slo order: FixedInterval = FixedInterval(
low=1000, mid=10000, high=100000, confidence=0.98
)

How is the data

shaped?
footprint
durability

Provide defaults from
the model

Inputs are Intervals

https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/service_capacity modeling/interface.py#1L 408-1445

https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/4fa8c600fa2cf12dc75735539d3b115a9cefe93d/service_capacity_modeling/interface.py#L408-L445

Intervals

from service capacity modeling.interface import CapacityDesires
from service capacity modeling.interface import FixedInterval, Interval
from service capacity modeling.interface import QueryPattern, DataShape

desires = CapacityDesires(

This service is critical to the business

service tier=1,

query pattern=QueryPattern(
Not sure exactly how much QPS we will do, but we think around
10,000 reads and 10,000 writes per second.
estimated read per second=Interval(

low=1 000, mid=10 000, high=100 000, confidence=0.98

)I

estimated write per second=Interval(
low=1 000, mid=10 000, high=100 000, confidence=0.98
),

),
Not sure how much data, but we think it'll be around 100 GiB
data shape=DataShape(
estimated state size gib=Interval(low=10, mid=100, high=1 000, confidence=0.98),
)

Intervals :

From the
Human

0.006
0.004

From the
Model

0.8
0.6
0.4
0.2

0.0

le-5

—— Reads per Second
--- E[Reads per Second]

0 10000 20000 30000 40000 50000
le—5 Reads (1/s)
—— Writes per Second
-=-= E[Writes per Second]
6 10000 20600 30600 40600 50600
Writes (1/s)
— Data Size (GiB)
=== E[Data Size]
0 200 400 600 800 1000

—— Compression Ratio (1:X)
--- E[Compression Ratio]

Data Size (GiB)

_

Compression Ratio (1:X)

0.0006

0.0004

0.0002

0.0000

0.010

0.008

0.006

0.004

0.002

0.000

04

03

0.2

01

0.0

12

10

0.8

0.6

0.4

0.2

0.0

—— Read Size (bytes)

Write On-CPU Latency (ms)

=== E[Read Size]
0 250 500 750 1000 1250 1500 1750 2000
Read Size (bytes)
—— Write Size (bytes)
=== E[Write Size]
6 250 560 7_';0 lObO 12‘50 ISbD 1750 ZObO
Write Size (bytes)
— Read On-CPU Latency (ms)
=== E[Read On-CPU Latency]
0 2 2 6 8 10
Read On-CPU Latency (ms)
—— Write On-CPU Latency (ms)
=== E[Write On-CPU Latency]
0 2 4 6 8 10

Intervals

From the
Human

From the
Model

N

10000 20000 30000 40000 50000

Reads (1/s)

Writes/second

|
10000 20000 30000 40000 50000

Writes (1/s)

Size (GiB)

200 400 600 800 1000

Data Size (GiB)

Compression
Ratio

Compression Ratio (1:X)

0.0006

0.0004

0.0002

0.0000

0.010

0.008

0.006

0.004

0.002

0.000

04

0.3

0.2

Size/read

\

1
750 1000 1250 1500 1750 2000

Read Size (bytes)

Size/write

750 1000 1250 1500 1750 2000

Write Size (bytes)

CPU Second
/ read

4 6 8 10
Read On-CPU Latency (ms)

CPU Second
[write

4 6 8 10

Write On-CPU Latency (ms)

Capacity
Planning
301

M(D, H, PL) — C

M = Workload Capacity Model
D = User Desire

H = Hardware Profile

PL = Current Pricing and Lifecycle

C = Candidate Cluster

Uncertain requirements

Capacity
Planning
Cassandra

Computers cost money

Which computers should | buy
For Cassandra?

Capacity

Planning TO dO |t ”g ht we need the
> right inputs

And some math ...

https://en.wikipedia.org/wiki/Queueing_theory

e Let's do the certain case first

301

Aka "let's ignore the
distributions for a second”

BuildingaModel \\/a need to compute a Cluster from a
Desire and Hardware context

lass NflxCassandraCapacityModel (CapacityModel):
@staticmethod
def capacity plan(
instance: Instance,
drive: Drive,

context: RegionContext,

desires: CapacityDesires,

extra model arguments: Dict[str, Any],
-> 0pt10na1[Capac1tyP1an]

https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/4fa8c600fa2cf12dc75735539d3b115a9cefe93d/service_capacity_modeling/models/org/netflix/cassandra.py#L386-L392

CPU

ot verage CPU time
= averag .
U request Sgrvxce P(Queue) Q
Tier
request 0 1% 2.375
let A = average d
second 1 5% 1.761
2 20% 1.16
R =1 X
[.1 3 30% 1
CPUs = R + Q= VR

| https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/main/service_capacity_modeling/models/common.py#L24-1. 66 N

https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/4fa8c600fa2cf12dc75735539d3b115a9cefe93d/service_capacity_modeling/models/common.py#L24-L66

15.3 Square-Root Staffing
CPU

In this section, we refine the R + +/ R approximation developed in the previous section.

As before, we assume an M/M/k with average arrival rate A and average server speed
1. The QoS goal that we set is that I, the probability of queueing in the M/M/k,
should be below some given value « (e.g., « = 20%). Our goal is to determine the
minimal number of servers, £, needed to meet this QoS goal.

Note that bounding F, is really equivalent to bounding mean response time or mean
queueing time, or similar metrics, because they are all simple functions of F, (e.g.,

from (14.9), we have E [Tg] = 1 - P - 12).

Theorem 15.2 (Square-Root Staffing Rule) Given an M/M/k with arrival rate \
and server speed w and R = \/ i, where R is large, let k* denote the least number
of servers needed to ensure that Py < . Then

kX ~ R+ cVR,

where c is the solution to the equation,

c®(c) 1-a (15.4)
$lc) «a '

where ®(-) denotes the c.d.f. of the standard Normal and ¢(-) denotes its p.d.f.

M. Harchol-Balter, Performance Modeling and Design of Computer Systems: Queueing Theory in Action. (google books)

https://books.google.com/books?id=75SbigDGK0kC

CPU

Reads/second

0 10000

20000 30000 40000 50000
Reads (1/s)

Writes/second

0 10000

20000 30000 40000 50000
Writes (1/s)

Write Size (bytes)

CPU Second
/ read

CPU Second
[write

Write On-CPU Latency (ms)

Network

. . bytes bytes
For simple caseit's | let u, = ond let g1y, = write
easy d It
let A, = e let A, = e
Tricky in complex second second
case... BWgimple = KX (1 X A, 4ty X Ay)

We have to know
Consistency Level BWeomplex = KX (CL X (u, X A;) +

and Replication RF X (U, X Ay))

Factor

| https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/main/service_capacity _modeling/models/common.py#L69-1L.82 N

https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/4fa8c600fa2cf12dc75735539d3b115a9cefe93d/service_capacity_modeling/models/common.py#L69-L82

T
H
L
Network : Reads/second Size/read
4 0.0004
i
:
2 0.0002 :
1
|
0 0.0000 y
0 10000 20000 30000 40000 50000 0 250 500 750 1000 1250 1500 1750 2000
le—5 Reads (1/s) Read Size (bytes)
T v
i 0.010 y
L3 L Ld
6 ertes/second Slze/wrlte
4 0.006
0.004
2
0.002
i
0 ! 0.000
0 10000 20000 30000 40000 50000 0 250 500 750 1000 1250 1500 1750 2000

Writes (1/s) Write Size (bytes)

Disk

Compaction strategy
and Compression
matter

Tricky: Remember
network drives must be
sized for 1O

RF X data size

SIZ€,0pe = _
#zones X compression
. Sizezone .
SIZ€,ode = X f(compaction)
#nodes, .

Epemnode — Sizenode
OR
EBS,ode = Max(size,qqge, f(read BW))

| https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/main/service_capacity_modeling/models/org/netflix/cassandra.py# N

L84-L88

https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/4fa8c600fa2cf12dc75735539d3b115a9cefe93d/service_capacity_modeling/models/org/netflix/cassandra.py#L84-L88
https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/4fa8c600fa2cf12dc75735539d3b115a9cefe93d/service_capacity_modeling/models/org/netflix/cassandra.py#L84-L88

0.006

0.004

0.002

0.000

0.8

0.6

04

0.2

0.0

Reads/second

0 10000 20000 30000 40000 50000
le—5 Reads (1/s)

Size (GiB)

0 200 400 600 800 1000
Data Size (GiB)

Compression
Ratio

4 6 8 10
Compression Ratio (1:X)

0.0006

0.0004

0.0002

0.0000

Size/read

250 500 750 1000 1250 1500 1750
Read Size (bytes)

2000

Memory

RAM,..,¢ = f(data size, working set)

Fundamental Tradeoff _ ,
RAM, ite = f(write BW, compaction)

reads (page cache) or
writes (heap)

RAMyyw = f(write BW, read BW)
Tricky: This depends RAM; sem = f(sidecars, kernel)
on the number of
nodes.

RAM = Z RAMcomponent

| https://qgithub.com/Netflix-Skunkworks/service-capacity-modeling/blob/main/service_capacity modeling/models/org/netflix/cassandra.py#L42-L157 N

https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/4fa8c600fa2cf12dc75735539d3b115a9cefe93d/service_capacity_modeling/models/org/netflix/cassandra.py#L42-L157

Memory

0.006

0.004

0.002

0.000

0.8

0.6

04

0.2

0.0

Reads/second
Writes/second

Size (GiB)

400 600 800 1000
Data Size (GiB)

Compression
Ratio

4 6 8 10
Compression Ratio (1:X)

0.0006

0.0004

0.0002

0.0000

0.010

0.008

0.006

0.004

0.002

0.000

Size/read

1000 1250 1500 1750
Read Size (bytes)

Size/write

1000 1250 1500 1750
Write Size (bytes)

Working Set?

This needs
very little
RAM

This needs
more
RAM

z
]
&
[=]
=y
g

io_latency/m5d_cass_io_lat

20.0
17.5 |
15.0 1
125 |
10.0 4
75
5.0 1

25 A1

0.0

015
Read |0 Latency (ms)

io_latency/gp2_cass_io_lat

= PDF: {low=0.08, mid=0.11, high=0.16}
e simulated
real data
025 030

10
Read |10 Latency (ms)

= PDF: {low=0.4, mid=1.05, high=1.5}
mm simulated
real data

Working Set

Probability Density

25

20 A

=
w

|y
o

0.5 |

0.0

>99% of Cache
SLO lies beneath

EBS P95 Working Set: EBS
- DB Read SLO
- Cache Read SLO
46% Of DB - EBS Drive Latency
. —— P95.0=1.35ms
SLO IIeS beneath DB Working Set=0.46
E BS P95 Cache Working Set=1.0

05 10 15
Latency (ms)

20

https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/main/service_capacity modeling/models/common.py#L 238-L276

25

https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/ee48f8185c86123fb64edf833971181c2e4798ea/service_capacity_modeling/models/common.py#L238-L276

Working Set

—— DB Read SLO
144 2% of Cache —— Cache Read SLO
. —— Ephem Drive Lat
12 - SLO lies beneath e
DB Werking Set=0.0
= 10 - NVMe P95 Cache Working Set=0.02
Z g
=y
S 6-
g | ~0% of DB
41 SLO lies beneath
.| NVMe P95
'\
o —
0.100 0.125 0.150 0175 0.200 0225 0.250 0275

Working Set: NVMe Ephemeral

Latency (ms)

https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/main/service_capacity modeling/models/common.py#L 238-L276

0.300

https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/ee48f8185c86123fb64edf833971181c2e4798ea/service_capacity_modeling/models/common.py#L238-L276

Planing Success!
301
We can compute a cluster

for a given input.

Planing Success!
301
We can compute a cluster

for a given input.

But we have dozens of
hardware types and cloud
drives ...

Capacit
PE\%?\?:\; VH(Mcassandra(D/ H/ P)) — CH
301
choose

C = argming(cost(Cy))

M(D, mb.2xlarge)) — 12 mb.2xlarge + 200GiB gp2
M(D, mb.4xlarge)) — 6 mb.4xlarge + 400GiB gp2
M(D, rbd.2xlarge)) — 6 rbd.2xlarge

now pick the cheapest one

Planing Great Success!
301
We can compute a cluster

over all inputs.

Planing Great Success!
301
We can compute a cluster

over all inputs.

But our inputs are

distributions ... and we have
like 20 of them ...

Capacity
Planning

Takeitto 11

https://pixabay.com/illust
rations/multiverse-paralle
I-universe-6508796/

Time for some Monte Carlo

https://en.wikipedia.org/wiki/Monte_Carlo_method

Capacity

Planning Let'S SimUIate pOSS|b|e WOI‘|C|S

Takeitto 11

Get some tail events

And pick the choice of least
regret across all worlds

What do we

regret?

regret(X, Y)$ K$ (X$ — Y$) s

regret(X, Vgick = Kaick Xgisk = Yaick)
Money for hardware

e Bought too little regret(X, Y) = Eregret(X, Y),

e Bought too much i

X
Running out of Disk regret(X;) = Z regret(X;, X;)
J

And ... more (pluggable)

regret..st = argming (regret)

World 1 World 2

We buy We buy
48 i3en.xlarge costing 96 rb.8xlarge costing
$73,652.57 $646,309.93

We require 6,634.0 GiB We require 17,941 GiB

World 1 IN World 2

We bought We needed to buy

48 i3en.xlarge costing 96 r5.8xlarge costing
$73,652.57 $646,309.93

We have 6,634.0 GiB We required 17,941 GiB

regret(W; inW,)g = 1.25 X |73,652.57 — 646,309.93|'2 ~ 10M
regret(Wy in Wy)gq = 1.10 X |6,634.0 — 17,941| 105 ~ 20K

regret(W; in W,) = 10 million dollars (underprovisioned)

World 2 IN World 1

We bought We needed to buy

96 rb.8xlarge costing 48 i3en.xlarge costing
$646,309.93 $73,652.57

We have 17,941 GiB We required 6,634.0 GiB

regret(W, in W;)g = 1.0 X |73,652.57 — 646,309.93|1% ~ 8M
regret(Wy in Wy)gie = 0.0 X 16,634.0 — 17,941| ¥ = 0K

regret(W, in W;) = 8 million dollars (overprovisioned)

Regret is not
symmetric!

Choice of constants
determines relative cost of

Under-provisioning
(buying too little)

Versus over-provisioning
(buying too much)

Least Regret

desires = CapacityDesires(
This service 1s critical to the business
service tier=l,
query pattern=QueryPattern(

Not sure exactly how much QPS we will do, but we think around
10,000 reads and 10,000 writes per second.
estimated read per second=Interval(

low=1 000, mid=10 000, high=100 000, confidence=0.98
)

estimated write per second=Interval(
low=1 000, mid=10 000, high=100 000, confidence=0.98
),

),

Not sure how much data, but we think it'll be around 100 GiB
data shape=DataShape (

estimated state size gib=Interval(
low=10, mid=100, high=1 000, confidence=0.98
),

),

Least Regret

from service capacity modeling.capacity planner import planner
from service capacity modeling.models.org import netflix

Load up the Netflix capacity models Least Regret Choice:

planner.register group(netflix.models) = |[------==------------
12 m5d.xlarge costing 8973.94

Plan a cluster]

plan = planner.plan(All Choices
model name="org.netflix.cassandra", = [-7""2""":°- .
region="us-east-1", { r5.xlarge': 4,

rbd.large’ s 31,
ma.2xlarge': 2,
m5d.xlarge': 224,

6
desires=desires, g
6
12 m5.xlarge': 132,
12
24
24

simulations=1024,
explain=True

m5d.xlarge': 277,

m5.xlarge': 242,

m5d.xlarge': 54,
48 m5.xlarge': 55,
48 m5d.xlarge': 2,
96 m5.xlarge': 1}

Least Regret
World

12 m5d.xlarge

$8,973.94
per year

0.006

0.004

0.002

0.000

0.8

0.6

04

02

0.0

—— Reads per Second
--- E[Reads per Second]
—— Sampled Reads per Second
0 10000 20000 30000 40000 50000
le-5 Reads (1/s)
—— Writes per Second
=== E[Writes per Second]
—— Sampled Writes per Second
0 10000 20000 30000 40000 50000
Writes (1/s)
— Data Size (GiB)
- ElData Size]
— Sampled Data Size (GiB)
0 200 400 600 800 1000
Data Size (GiB)
—— Compression Ratio (1:X)
--- E[Compression Ratio]
—— Sampled Compression Ratio (1:X)

6

Compression Ratio (1:X)

0.0006

0.0004

0.0002

0.0000

0.010

0.008

0.006

0.004

0.002

0.000

0.4

03

0.2

01

0.0

0.8

0.6

0.4

0.2

0.0

— Read Size (bytes)
=== E[Read Size]
— Sampled Read Size (bytes)
0 250 500 750 1000 1250 1500 1750 2000
Read Size (bytes)
—— Write Size (bytes)
=== ElWrite Size]
—— Sampled Write Size (bytes)
0 250 500 750 1000 1250 1500 1750 2000
Write Size (bytes)
— Read On-CPU Latency (ms)
= E[Read On-CPU Latency]
— Sampled Read On-CPU Latency (ms)
0 4 6 8 10
Read On-CPU Latency (ms)
—— Write On-CPU Latency (ms)
=== E[Write On-CPU Latency]
—— Sampled Write On-CPU Latency (ms)

4 6 8
Write On-CPU Latency (ms)

"N

Least Regret Reads/second
World ¥
12 m5d.xlarge

$8,973.94

oer year Size (GiB

Highest Regret
World

96 mb5.xlarge
with 400 GiB gp2

$62,145.34

Overprovisioned!

0.006

0.004

0.002

0.000

0.8

0.6

04

02

0.0

T
—— Reads per Second

=== E[Reads per Second]

—— Sampled Reads per Second

0 10000 20000 30000 40000 50000
le-5 Reads (1/s)
—— Writes per Second
=== E[Writes per Second]
—— Sampled Writes per Second
0 10000 20000 30000 40000 50000
Writes (1/s)
— Data Size (GiB)
--- ElData Size]
— Sampled Data Size (GiB)
0 200 400 600 800 1000
Data Size (GiB)
—— Compression Ratio (1:X)
--- E[Compression Ratio]
—— Sampled Compression Ratio (1:X)
4 6

Compression Ratio (1:X)

0.0006

0.0004

0.0002

0.0000

0.010

0.008

0.006

0.004

0.002

0.000

0.4

03

0.2

01

0.0

0.8

0.6

0.4

0.2

0.0

—— Read Size (bytes)
=== E[Read Size]

—— Sampled Read Size (bytes)

250 500 750 1000 1250 1500 1750 2000
Read Size (bytes)
—— Write Size (bytes)
=== Elwrite Size]
—— Sampled Write Size (bytes)
250 500 750 1000 1250 1500 1750 2000

Write Size (bytes)

— Read On-CPU Latency (ms)
E[Read On-CPU Latency]

—— Sampled Read On-CPU Latency (ms)

4 6 8
Read On-CPU Latency (ms)

10

—— Write On-CPU Latency (ms)
=== E[Write On-CPU Latency]

—— Sampled Write On-CPU Latency (ms)

4 6 8
Write On-CPU Latency (ms)

10

Highest Regret
World

96 mb5.xlarge
with 400 GiB gp2

$62,145.34

Overprovisioned!

Reads/second

4
00000

CPU/Read

A cheap but
regretful world

6 r5d.large
$2,854.34

Underprovisioned!

0.006

0.004

0.002

0.000

0.8

0.6

04

0.2

0.0

—— Reads per Second
=== E[Reads per Second]
—— Sampled Reads per Second

le-5

10000 20000 30000 40000 50000
Reads (1/s)

—— Writes per Second
=== E[Writes per Second]
—— Sampled Writes per Second

N

10000 20000 30000 40000 50000
Writes (1/s)

— Data Size (GiB)
--- ElData Size]
—— Sampled Data Size (GiB)

200 400

600 800 1000
Data Size (GiB)

~

k —— Compression Ratio (1:X)
-=-- E[Compression Ratio]
—— Sampled Compression Ratio (1:X)
4 6

Compression Ratio (1:X)

0.0006

0.0004

0.0002

0.0000

0.010

0.008

0.006

0.004

0.002

0.000

04

03

0.2

01

0.0

0.8

0.6

0.4

0.2

0.0

—— Read Size (bytes)
=== E[Read Size]
—— Sampled Read Size (bytes)

250 500 750 1000 1250 1500 1750 2000
Read Size (bytes)
—— Write Size (bytes)
=== E[Write Size]
—— Sampled Write Size (bytes)
250 500 750 1000 1250 1500 1750 2000

Write Size (bytes)

— Read On-CPU Latency (ms)
E[Read On-CPU Latency]
—— Sampled Read On-CPU Latency (ms)

4 6 8 10
Read On-CPU Latency (ms)

—— Write On-CPU Latency (ms)
=== E[Write On-CPU Latency]
—— Sampled Write On-CPU Latency (ms)

4 6 8
Write On-CPU Latency (ms)

"N

A cheap but
regretful world

Reads/second

6 r5d.large
$2,854.34

Underprovisioned!

Least Regret: A Different Requirement

desires footprint = CapacityDesires(
This service 1is critical to the business
service tier=1,

query pattern=QueryPattern(
estimated read per second=Interval(
low=1l 000, mid=10 000, high=100 000, confidence=0.98
),

estimated write per second=Interval(
low=10 000, mid=100 000, high=1 000 000, confidence=0.98
),

)

Not sure how much data, but we think it'll be around 10 TiB
data shape=DataShape (

estimated state size gib=Interval(

low=1 000, mid=10 000, high=100 000, confidence=0.98),
),

Least Regret: A Different Requirement

Least Regret Choice:

48 i3en.xlarge costing 73652.57

A lot more variability based on
input!

But we still picked 48
i3en.xlarge 165/1024 times

All Choices

'24
'24
'24
'24
‘24
' 24
‘24
‘24
‘24
' 48
' 48
' 48
' 48
' 48
' 48
' 48

48
48
48
48
48
48
96
96
96

96
96
96
96
96
96

i3en.2xlarge':

i3en.3xlarge'
i3en.xlarge':
m5.8xlarge':
m5d.4xlarge':
m5d.8xlarge':
r5.4xlarge':
r5.8xlarge':

i3en.2xlarge':
i3en.3xlarge':

i3en.xlarge':
m5.4xlarge':
m5.8xlarge’:

m5d.2xlarge':
r5.2xlarge':
r5.4xlarge':
r5.8xlarge':
r5.large':
r5.xlarge':
i3.2xlarge':

i3en.2xlarge':
i3en.3xlarge':

i3en.xlarge':
m5.2xlarge':
m5.4xlarge':
m5.8xlarge':
r5.2xlarge':
r5.4xlarge':
r5.large':
i3.xlarge':
m5.xlarge':
r5.xlarge':
i3.2xlarge':

i3en.2xlarge':
i3en.3xlarge':

i3en.xlarge':
m5.2xlarge':
m5.4xlarge':
m5.8xlarge':
m5d.xlarge':
r5.2xlarge':
r5.4xlarge':
r5.large':
i3.xlarge':
m5.xlarge':
r5.xlarge':

i3en.2xlarge':

i3en.xlarge':
m5.2xlarge':
r5.2xlarge':
r5.4xlarge':
r5.8xlarge':

13;
: 14,

Least Regret

48 i3en.xlarge

$73,652.57

Good amount of disk

le-5

—— Reads per Second
-=-- E[Reads per Second]
—— Sampled Reads per Second

150000 175000 200000

—— Writes per Second
~=-- E[Writes per Second]
—— Sampled Writes per Second

°

le-5

150000 175000 200000

— Data Size (GiB)
ot E[Data Size]
— Sampled Data Size (GiB)

© © © © © © © © ©

°

60000 70000 80000

0.0007

0.0006

0.0005

0.0004

0.0003

0.0002

0.0001
0.0000

0010

0.008

0.006

0.004

0.002

0.000

—— Read Size (bytes)
-=- E[Read Size]
—— Sampled Read Size (bytes)

1000 1250

Read Size (bytes)

1500 1750 2000

—— Wite Size (bytes)
=== E[Write Size]
—— Sampled Wite Size (bytes)

1000
Write Size (bytes)

1250

1500 1750 2000

—— Read On-CPU Latency (ms)
-== E[Read On-CPU Latency]
—— Sampled Read On-CPU Latency (ms)

3 6
Read On-CPU Latency (ms)

Least Regret

96 r5.8xlarge
with 1.2TiB gp2

$646,309.93

Too much money!

N

—— Reads per Second
-=- E[Reads per Second]
—— Sampled Reads per Second

0 25000 50000 75000 100000 125000 150000 175000 200000
Reads (1/s)
1e-6
Writes (1/s)
le-5
—— Data Size (GiB)
=== E[Data Size]
— Sampled Data Size (GiB)
10000 20000 30000 40000 50000 60000 70000 80000
Data Size (GiB)

04

03

02

01

00

Write Size (bytes)

—— Read On-CPU Latency (ms)
= E[Read On-CPU Latency]

— Sampled Read On-CPU Latency (ms)

4 6
Read On-CPU Latency (ms)

Monitoring

How do you know
you've run out of
capacity?

D

@

@

Q)

=/

CPU

Measure
/proc/schedstat

"would additional CPUs
help me"

def gather _metric():
scale time spent in the scheduler by this factor
schedstat lines = open('/proc/schedstat').readlines()
delays = [
int(i.split(' ')[8]) for i
in schedstat lines if i.startswith('cpu')

1

delays = delays or [0]
return sum(delays) / float(len(delays))

threads (x 108)

threads (x 108)

100.8

20.8

threads waiting for a free CPU

TierO
Latency Sensitive

8.8
PT 87

108.8 4

48.8

20.8

o
T T T T T T T T T T T T T T T T T 1
:58 ©8:06 ©8:10 ©8:26 68:38 ©8:40 ©8:56 69:08 69:10 09:20 ©9:38 ©9:48 ©9:50 16:60 10:18 10:28 18:30 18:48 10:58

threads waiting for a free CPU

Tier 2
Throughput

M g

8.8
PT

' ' ' ' ' ' ' ' ' ' ' ' ' ' 1 1 ' '
08:60 ©8:10 ©8:26 ©8:38 08:40 ©8:50 ©9:60 ©9:18 ©9:28 ©9:30 ©9:40 09:58 10:08 10:18 10:286 18:30 18:48 18:58

https://www.kernel.org/doc/html/latest/scheduler/sched-stats.html

Disk
Network

Basic utilization metrics
suffice

Disk Percent Used (SNMP)

108.8
808.84
608.8 4
-
c
@
o
(<
@ MMW
o
48.8
28.8
0. B_ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PT 12 88 15:88 18:880 21:80 Sepl6 ©3:88 06:80 ©9:80 12:80 15:86 18:88 21:88 Sepl7 ©3:80 ©86:08 89:08
W disk.bytesPercentUsed
Max : 49.424 Min 43.999
Avg : 45.988 Last : 46.0804
Tot : 26.443k Cnt 575.600
Frame: 2d, End: 2821-89-17711:56-87:80[US/Pacific], Step
Fetch: 195ms (L: 15.8k, 548.8, 1.8; D: 898.6k, 315.6k, 575 Bk]
Interface Throughput
1.56
1.264
o
=
S
o
& 8.96
~
)
-
bl
o
8.6G 4
8.3G
0.8G - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PT 68:58 ©9:60 09:10 09:20 69:30 069:48 69:58 10:00 18:10 10:26 10:38 10:40 18:50 11:88 11:18 11:28 11:38 11:48 11:58
W net.iface.bytes
Max : 1.7686 Min 168.886M
Avg @ 239.926M Last : 186.667M
Tot : 43.1876 Cnt 186.660
Frame: 3h, End: 2621-89-17T11:51-87:88[US/Pacific], Step: 1m
Fetch: 3@@ms (L: 1.5k, 369.8, 1.8; D: 92.2k, 66.8k, 180.8k)

RAM

Page Cache
Use read IO metrics

Or bpf if you're fancy
(cachestat)

JVM/Write Buffer

Major garbage collection
frequency > ~10 minutes

Flush frequency > ~4

minutes

https://github.com/iovisor/bcc/blob/master/tools/cachestat_example.txt
https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/main/service_capacity_modeling/models/org/netflix/cassandra.py#L45-L48

Monitoring

Your Buy more of whatever you ran
Choices
out of.

Need more memory?
M5 -> Rb5

Need more network?
R5 -> Rbn

Conclusion

Understanding Hardware
We measured, priced and imposed
lifecycle on our hardware

Capacity Planning
Apply queueing theory with anger
Simulate worlds, pick least regretful

Monitoring your Choices
Buy more of what you need

Questions

@

Q)

