
How Netflix Provisions
Optimal Cloud Deployments
of Cassandra

Joey Lynch
Senior Software Engineer
Cloud Data Engineering - Netflix

Joey Lynch

Senior Software Engineer
Cloud Data Engineering at Netflix

Database shepherd and data wrangler

Speaker

https://jolynch.github.io/

https://jolynch.github.io/

https://github.com/Netflix-Skunkworks/service-capacity-modeling

Show me the
Code!

https://github.com/Netflix-Skunkworks/service-capacity-modeling

Outline Understanding Hardware
Computers are shaped differently
Computers cost money

Capacity Planning
Requirement Language
Capacity Planning - Queues oh my
Cassandra Capacity Planning Model

Monitoring your Choices
Key Capacity Metrics to Monitor

Capacity
Planning
101

Under-
standing

Hardware

There are a lot of computers
… and they cost money

Capacity
Planning
101

Hardware

Amazon EC2 Instance
Comparison

Hundreds of
choices

With confusing
names

No indication of
lifecycle (alpha,
beta, stable,
deprecated)

https://www.ec2instances.info/
https://www.ec2instances.info/

Hardware

Relevant information to the choice changes rapidly and is
not always accurate.

Problem

We do not have accurate
hardware profiles

We do not know
company specific pricing
and lifecycle information

Solution? Find the instance type labeled
"database class" and buy that

Solution? Find the instance type labeled
"database class" and buy that

Search for conference talks by "big
users" and use whatever they use.

Solution? Find the instance type labeled
"database class" and buy that

Search for conference talks by "big
users" and use whatever they use.

We can do better

Hardware Capacity: How much CPU, RAM,
Network, Disk?

Latency: How fast are the CPUs,
NICs, and Drives?

Lifecycle: Is this alpha or stable?

Price: How much do I pay?

Hardware Capacity: How much CPU, RAM,
Network, Disk?

Latency: How fast are the CPUs,
NICs, and Drives?

Lifecycle: Is this alpha or stable?

Price: How much do I pay?

You can measure these

This depends on your deployment

Hardware
Lifecycle Would friends let friends launch on m3

instances?

Does your software stack work on
arm64?

Hardware
Lifecycle

At Netflix

Alpha: Hardware preview (m6g)

Beta: Production testing (r5dn)

Stable: Use in production (m5)

Deprecated: Stop using (i3 -> i3en)

End-of-life: Do not use (m3, i2, ...)

https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/main/service_capacity_modeling/interface.py#L116-L131

https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/ee48f8185c86123fb64edf833971181c2e4798ea/service_capacity_modeling/interface.py#L116-L131

Solution! We can know!

Enumerate Hardware Shapes
Measure their performance

https://github.com/Netflix-Skunkworks/service-capacity-modeling/tree/main/service_capacity_modeling/hardware/profiles

https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/main/service_capacity_modeling/hardware/profiles/shapes/aws.json
https://github.com/Netflix-Skunkworks/service-capacity-modeling/tree/main/service_capacity_modeling/hardware/profiles

Solution! We can know!

Enumerate Hardware Shapes
Measure their performance

Enrich with context!

Layer on pricing and lifecycle

https://github.com/Netflix-Skunkworks/service-capacity-modeling/tree/main/service_capacity_modeling/hardware/profiles

https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/main/service_capacity_modeling/hardware/profiles/shapes/aws.json
https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/main/service_capacity_modeling/hardware/profiles/pricing/aws/3yr-reserved.json
https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/main/service_capacity_modeling/interface.py#L116-L131
https://github.com/Netflix-Skunkworks/service-capacity-modeling/tree/main/service_capacity_modeling/hardware/profiles

Solution! How do we measure?

Generate Load (iperf, ndbench,
netperf, fio)
Measure (bcc, metrics, etc..)

How do we price?

Layer company pricing on top of
shape definitions

https://iperf.fr/
https://github.com/Netflix/ndbench
https://github.com/HewlettPackard/netperf
https://github.com/axboe/fio
https://github.com/iovisor/bcc
https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/main/service_capacity_modeling/hardware/__init__.py#L26-L67

Solution!

https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/main/notebooks/drive_latency.ipynb

https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/main/notebooks/drive_latency.ipynb

Solution!

Solution!

Record Baseline NOT Burst

Solution!

CPU Count and Frequency

Actual Memory and Network

Actual Disk and Disk Latency

https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/main/service_capacity_modeling/hardware/profiles/shapes/aws.json

https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/main/service_capacity_modeling/hardware/profiles/shapes/aws.json

Solution!

Your prices

There are relevant
services other than drives

Solution!

Company specific lifecycle

Capacity
Planning
201

User Input We need a unified language for
talking about requirements

The user probably knows how much
CPU, RAM, Network, Disk space, and
Disk IOs they need

User Input

The user probably knows how much
CPU, RAM, Network, Disk space, and
Disk IOs they need

They probably don't

User Input

The user probably knows how much
CPU, RAM, Network, Disk space, and
Disk IOs they need

They probably don't

Well they must know how much traffic
they will send, how big their data is?

User Input

The user probably knows how much
CPU, RAM, Network, Disk space, and
Disk IOs they need

They probably don't

Well they must know how much traffic
they will send, how big their data is?

They probably don't

User Input

We will never know the truth

User Input

The user probably knows how much
CPU, RAM, Network, Disk space, and
Disk IOs they need

They probably don't

Well they must know how much traffic
they will send, how big their data is?

They probably don't know exactly

User Input

Intervals

https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/main/service_capacity_modeling/stats.py#L90-L138

https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/0bdd2bd9f74213da8830352da1a4938d07350a98/service_capacity_modeling/stats.py#L90-L138

Capacity Desires

https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/main/service_capacity_modeling/interface.py#L448-L465

https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/4fa8c600fa2cf12dc75735539d3b115a9cefe93d/service_capacity_modeling/interface.py#L448-L465

Capacity Desires

https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/main/service_capacity_modeling/interface.py#L448-L465

https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/4fa8c600fa2cf12dc75735539d3b115a9cefe93d/service_capacity_modeling/interface.py#L448-L465

How sad are you if this cluster fails?

Tier 0 =💰⋘🔥

Tier 1 =💰≪🔥
Tier 2 =💰≅🔥
Tier 3 =💰≫🔥

Service Tier

Query Pattern

https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/service_capacity_modeling/interface.py#L372-L405

How is it queried?
read/write
sizing
latency

Provide defaults from
the model

Inputs are Intervals

https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/4fa8c600fa2cf12dc75735539d3b115a9cefe93d/service_capacity_modeling/interface.py#L372-L405

Data Shape

https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/service_capacity_modeling/interface.py#L408-L445

How is the data
shaped?

footprint
durability

Provide defaults from
the model

Inputs are Intervals

https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/4fa8c600fa2cf12dc75735539d3b115a9cefe93d/service_capacity_modeling/interface.py#L408-L445

Intervals

Intervals

From the
Human

From the
Model

👀

Intervals

From the
Human

From the
Model

Reads/second Size/read

Writes/second Size/write

Size (GiB) CPU Second
/ read

CPU Second
/ write

Compression
Ratio

Capacity
Planning
301

Capacity
Planning
Cassandra

Uncertain requirements

Computers cost money

…

Which computers should I buy
For Cassandra?

Capacity
Planning
301

To do it right we need the
right inputs

And some math ...

https://en.wikipedia.org/wiki/Queueing_theory

Capacity
Planning
301

Let's do the certain case first

Aka "let's ignore the
distributions for a second"

We need to compute a Cluster from a
Desire and Hardware context

Building a Model

https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/main/service_capacity_modeling/models/org/netflix/cassandra.py#L386-L392

https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/4fa8c600fa2cf12dc75735539d3b115a9cefe93d/service_capacity_modeling/models/org/netflix/cassandra.py#L386-L392

CPU

Service
Tier

P(Queue) Q

0 1% 2.375

1 5% 1.761

2 20% 1.16

3 30% 1

https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/main/service_capacity_modeling/models/common.py#L24-L66

https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/4fa8c600fa2cf12dc75735539d3b115a9cefe93d/service_capacity_modeling/models/common.py#L24-L66

CPU

M. Harchol-Balter, Performance Modeling and Design of Computer Systems: Queueing Theory in Action. (google books)

https://books.google.com/books?id=75SbigDGK0kC

CPU Reads/second

Writes/second

CPU Second
/ read

CPU Second
/ write

Network

https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/main/service_capacity_modeling/models/common.py#L69-L82

For simple case it's
easy

Tricky in complex
case...

We have to know
Consistency Level
and Replication
Factor

https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/4fa8c600fa2cf12dc75735539d3b115a9cefe93d/service_capacity_modeling/models/common.py#L69-L82

Network Reads/second Size/read

Writes/second Size/write

Disk

https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/main/service_capacity_modeling/models/org/netflix/cassandra.py#
L84-L88

Compaction strategy
and Compression
matter

Tricky: Remember
network drives must be
sized for IO

https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/4fa8c600fa2cf12dc75735539d3b115a9cefe93d/service_capacity_modeling/models/org/netflix/cassandra.py#L84-L88
https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/4fa8c600fa2cf12dc75735539d3b115a9cefe93d/service_capacity_modeling/models/org/netflix/cassandra.py#L84-L88

Disk

Size (GiB)

Compression
Ratio

Reads/second Size/read

Memory

https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/main/service_capacity_modeling/models/org/netflix/cassandra.py#L42-L157

Fundamental Tradeoff
reads (page cache) or
writes (heap)

Tricky: This depends
on the number of
nodes.

https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/4fa8c600fa2cf12dc75735539d3b115a9cefe93d/service_capacity_modeling/models/org/netflix/cassandra.py#L42-L157

Memory Reads/second Size/read

Writes/second Size/write

Size (GiB)

Compression
Ratio

Working Set?

This needs
very little
RAM

This needs
more
RAM

Working Set

https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/main/service_capacity_modeling/models/common.py#L238-L276

46% of DB
SLO lies beneath
EBS P95

>99% of Cache
SLO lies beneath
EBS P95

https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/ee48f8185c86123fb64edf833971181c2e4798ea/service_capacity_modeling/models/common.py#L238-L276

Working Set

https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/main/service_capacity_modeling/models/common.py#L238-L276

~0% of DB
SLO lies beneath
NVMe P95

2% of Cache
SLO lies beneath
NVMe P95

https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/ee48f8185c86123fb64edf833971181c2e4798ea/service_capacity_modeling/models/common.py#L238-L276

Capacity
Planning
301

Success!

We can compute a cluster
for a given input.

Capacity
Planning
301

Success!

We can compute a cluster
for a given input.

But we have dozens of
hardware types and cloud
drives ...

Capacity
Planning
301

Capacity
Planning
301

Great Success!

We can compute a cluster
over all inputs.

Capacity
Planning
301

Great Success!

We can compute a cluster
over all inputs.

But our inputs are
distributions … and we have
like 20 of them ...

https://pixabay.com/illust
rations/multiverse-paralle
l-universe-6508796/

Capacity
Planning

Take it to 11

Time for some Monte Carlo

https://en.wikipedia.org/wiki/Monte_Carlo_method

Capacity
Planning

Take it to 11

Let's simulate possible worlds

Get some tail events

And pick the choice of least
regret across all worlds

Money for hardware
● Bought too little
● Bought too much

Running out of Disk

And … more (pluggable)

What do we
regret?

World 2

We buy
96 r5.8xlarge costing
$646,309.93

We require 17,941 GiB

World 1

We buy
48 i3en.xlarge costing
$73,652.57

We require 6,634.0 GiB

World 1 IN

We bought
48 i3en.xlarge costing
$73,652.57

We have 6,634.0 GiB

World 2

We needed to buy
96 r5.8xlarge costing
$646,309.93

We required 17,941 GiB

World 2 IN

We bought
96 r5.8xlarge costing
$646,309.93

We have 17,941 GiB

World 1

We needed to buy
48 i3en.xlarge costing
$73,652.57

We required 6,634.0 GiB

Regret is not
symmetric! Choice of constants

determines relative cost of

Under-provisioning
(buying too little)

versus over-provisioning
(buying too much)

Least Regret

Least Regret

Least Regret
World

12 m5d.xlarge

$8,973.94
per year

Least Regret
World

12 m5d.xlarge

$8,973.94
per year

Reads/second

Size (GiB

Highest Regret
World

96 m5.xlarge
with 400 GiB gp2

$62,145.34

Overprovisioned!

Highest Regret
World

96 m5.xlarge
with 400 GiB gp2

$62,145.34

Overprovisioned!

Reads/second

CPU/Read

A cheap but
regretful world

6 r5d.large

$2,854.34

Underprovisioned!

A cheap but
regretful world

6 r5d.large

$2,854.34

Underprovisioned!

Reads/second

Least Regret: A Different Requirement

Least Regret: A Different Requirement

A lot more variability based on
input!

But we still picked 48
i3en.xlarge 165/1024 times

Least Regret

48 i3en.xlarge

$73,652.57

Good amount of disk

Least Regret

96 r5.8xlarge
with 1.2TiB gp2

$646,309.93

Too much money!

Monitoring How do you know
you've run out of
capacity?

CPU

Tier 0
Latency Sensitive

Tier 2
Throughput

Measure
/proc/schedstat

"would additional CPUs
help me"

https://www.kernel.org/doc/html/latest/scheduler/sched-stats.html

Disk
Network

Basic utilization metrics
suffice

RAM

Page Cache

Use read IO metrics

Or bpf if you're fancy
(cachestat)

JVM/Write Buffer

Major garbage collection
frequency > ~10 minutes

Flush frequency > ~4
minutes

https://github.com/iovisor/bcc/blob/master/tools/cachestat_example.txt
https://github.com/Netflix-Skunkworks/service-capacity-modeling/blob/main/service_capacity_modeling/models/org/netflix/cassandra.py#L45-L48

Monitoring
Your
Choices

Buy more of whatever you ran
out of.

Need more memory?
M5 -> R5

Need more network?
R5 -> R5n

Conclusion Understanding Hardware
We measured, priced and imposed
lifecycle on our hardware

Capacity Planning
Apply queueing theory with anger
Simulate worlds, pick least regretful

Monitoring your Choices
Buy more of what you need

Questions

Demo

