
Towards Practical Self-Healing Distributed
Databases

Joseph Lynch
Cloud Data Engineering

Netflix, Inc.
Los Gatos, USA

josephl@netflix.com

Dinesh Ashok Joshi
Apache Cassandra

Apache Software Foundation
San Jose, USA

djoshi@apache.org

Abstract—As distributed databases expand in popularity, there
is ever-growing research into new database architectures that
are designed from the start with built-in self-tuning and self-
healing features. In real world deployments, however, migration
to these entirely new systems is impractical and the challenge
is to keep massive fleets of existing databases available under
constant software and hardware change. Apache Cassandra is
one such existing database that helped to popularize “scale-out”
distributed databases and it runs some of the largest existing
deployments of any open-source distributed database.

In this paper, we demonstrate the techniques needed to trans-
form the typical, highly manual, Apache Cassandra deployment
into a self-healing system. We start by composing specialized
agents together to surface the needed signals for a self-healing
deployment and to execute local actions. Then we show how to
combine the signals from the agents into the cluster level control-
planes required to safely iterate and evolve existing deployments
without compromising database availability. Finally, we show how
to create simulated models of the database’s behavior, allowing
rapid iteration with minimal risk. With these systems in place, it
is possible to create a truly self-healing database system within
existing large-scale Apache Cassandra deployments.

Index Terms—Distributed Databases, Control Planes, Apache
Cassandra, Databases

I. INTRODUCTION

Advances in data storage have proven that cheap commodity
hardware is a viable platform for large scale databases, with
significant improvements shown in data models, distribution
mechanisms, consensus protocols, and storage formats. De-
spite these improvements, operating existing database tech-
nologies remains a high-touch activity. Operators are forced
to either invest heavily in techniques for coping with change,
or to resign themselves to operating a system which imposes
stasis rather than enabling dynamism.

Meanwhile, a new class of databases offers significantly
increased automation “out of the box”. These self-tuning and
self-healing databases promise significantly reduced operator
burden, with the expectation being that the database software
itself handles ever more aspects of its management, raising the
level of abstraction visible to the database operator even fur-
ther. We explore the methods and techniques used to produce
such a self-healing database, and evaluate their application to
an existing technology: Apache Cassandra. Our hope is that
existing deployments can achieve significant improvements in

operability without requiring them to change the aspects of
the database that work for them. By doing so, operators can
continue to reap the benefits which originally attracted them
to Apache Cassandra, while reducing maintenance burden and
enabling even greater scale.

Apache Cassandra is a widely used open source distributed
database that has gained popularity for its flexible data model,
tunable consistency guarantees, and linear scalability through
use of partitioning. When deployed at large scale, however,
problems arise which the open-source database does not
address on its own. Faults are common in both software and
hardware. Meanwhile, the system must deal with changes
in its own requirements: software upgrades, changing traffic
patterns, data load, etc. Most operators write automated scripts
to monitor and deal with such issues. However, over time
it becomes extremely complex to manage large deployments
without support for self-healing built into the database. Apache
Cassandra wasn’t designed with self-healing in mind and
therefore it is interesting to explore a minimal design to build
self-healing properties into a mature distributed database like
Apache Cassandra.

This paper first introduces the challenge of operating a large
scale Cassandra deployment. Next we describe the building
blocks of a self-healing system. Finally, we discuss how to
safely experiment on production deployments.

II. GOAL OF SELF-HEALING DISTRIBUTED DATABASES

A self-healing distributed database does not imply that it
handles all types of failures and magically tunes itself to the
most optimal configuration. Instead, the main goal of a self-
healing database is to constantly move towards desired goals
limited to self-preservation. When such a database takes action
to “heal” itself, it is critical to have sufficient transparency for
the operator to understand the rationale behind the database’s
actions [1].

To be useful in practice, the database’s self-healing capabil-
ities must have thoughtful limitations put in place, both to help
human operators understand what is happening and to limit
business risk. Theoretically, it may be possible to train a black-
box machine learning model such as a deep neural network
or a genetic algorithm to seek optimal database configuration,
but we believe the field lacks the ability to express complex



constraints like durability or availability risk in the required
objective function(s) [2]. In particular, black-box cost/objective
function optimization techniques often prioritize properties
that are easy to measure, such as performance, over those that
are truly important but difficult to quantify such as durability
or availability risk. Furthermore, in industry we often witness
intelligent systems enter oscillating states, and if the system
cannot explain itself, the human operator is likely to disable
it entirely.

III. OPERATIONAL CHALLENGES OF LARGE SCALE
APACHE CASSANDRA

Apache Cassandra’s design [3] is derived from Amazon’s
Dynamo [4] and Google’s BigTable [5] distributed database
systems. The basic architecture is a collection of servers that
form a Chord-style distributed hash table (DHT) [6] and use
a Log Structured Merge (LSM) tree storage engine [7]. It is a
quorum based eventually consistent system with client-tunable
consistency on write and read operations.

A. Deploying and Managing Cassandra

Deploying and running a distributed database such as
Apache Cassandra can be challenging. In addition to having
to manage the software on a cluster, hardware is constantly
degrading and failing. In order to ensure smooth operations,
operators monitor Cassandra’s metrics and perform operations
using control interfaces that the database exposes. Often,
operators aggregate metrics in an external system in order to
monitor trends over time. Trends, such as elevated read or
write latency, can help detect issues before they manifest as
user impacting problems. Today, operators are notified when
trends breach acceptable thresholds. In a typical Cassandra
setup operators manually intervene to solve issues such as
hardware failure, hardware degredation, and software or con-
figuration bugs. A self-healing database would ideally solve
some subset of these issues for the operator.

B. Common Control Interfaces

Apache Cassandra enables tuning via several interfaces.
The basic configuration is stored in a YAML file which is
loaded only at start-up time. For changes which must be
applied online, Cassandra offers a Java Management Extension
(JMX) operator interface which can modify a running database
process. Finally, Cassandra has system tables which modify
configuration through Cassandra’s native CQL protocol.

C. Administrative overhead during scale out

Maintenance tasks can be divided into two categories: those
which can be performed on a node while it still services
queries, and those which require downtime of at least one
node in the cluster. The former category includes many types
of tuning and reconfiguration, as well as modifications to hard-
ware systems which are redundant (e.g. power supply units
and shared block storage). The second category encompasses
most software upgrades and modifications of non-redundant
hardware systems (e.g. commodity CPUs and motherboards).

A useful metric to consider is how long the database can
continue operating without human intervention.

IV. SELF-HEALING ARCHITECTURE

The fundamental components of a self-healing distributed
database deployment are Specialized Agents that can sense and
react to events. These agents cooperate to keep the database
functioning through the Cluster Manager which aggregates
state and mediates state transitions for the agents. The system
draws inspiration from the human nervous system which not
only senses but also can react locally or globally based on
sensory inputs.

Crucially, every component of the system is “goal-driven”:
they have some conception of the desired goals for the cluster,
and are constantly working to converge towards that goal
state. The system starts with a declarative description of
what the human operator wants the database to accomplish.
These descriptions are written as hierarchical configuration
documents parameterized by environment that describes all
aspects of the database’s deployment for that environment. For
example, an Apache Cassandra goals document might include
fields such as:

goals(cluster_name, environment) = {
software = {

os_version = "bionic_20191023",
db_version = "3.0.19.7",
db_config = {...}, ...

},
hardware = {

node_count_range = [48, 96],
node_type = "m5d.2xlarge", ...

},
service_level_objectives = {

read_latency_p99_ms = 10,
1m_availability = 0.999,
max_cost_usd = 100000, ...

}
}

This document should completely describe the operator’s
desired goals to the Cluster Manager, which can then delegate
to specialized agents, each with a limited area of responsibility.
Configuration is hierarchical so that operators can express
goals at a granular level and then the configurations ”merge
up” the environment hierarchy. For instance, an operator
could set the hardware.node_type goal for only one
availability zone within a region, or could specify an override
db_version for an entire cluster in staging.

Service Level Objectives (SLOs) are included in the goal
document so that the Cluster Manager can monitor the
database system’s achievement of business-critical metrics [8]
such as availability of the system for consistent read queries
or the percentage of write queries that are exceeding the write
latency target. One can also include less direct objectives
such as expected time between failures so that the agents



can appropriately rate-limit their maintenance actions based
on failure models [9].

In addition to goals, the system associates context about the
data stored within each cluster. Unlike goals, context primarily
impacts user access, monitoring, and incident response flows
rather than day to day maintenance activities.

context(cluster_name, environment) = {
owners = ["owners@company.com", ...]
users = ["user1", "app1", ...]
tags = {

sensitive = true,
tier = 1,

}
}

A common purpose of this context is to help inform monitor-
ing systems to determine which human engineers care about a
database and why. For example, at Netflix, our systems might
page owners of a tier zero cluster when SLOs are breached
instead of notifying via email. Another common use of context
is to allow automated access control for the appropriate
engineers to the appropriate clusters. As an example, databases
that contain sensitive data might default to restrictive access
control or provide for “taint” tracking in downstream data
pipelines. This capability allows incident response involving
data exposure to understand where sensitive data originated
and how limited the impact is.

The self-healing database architecture seen in Fig. 1 con-
stantly drives towards the desired goals subject to the con-
straints imposed by the context. For each goal we surface a
measurement of the state of the system from local agents, and
when the local agent detects that the node state does not meet
the desired goal state, that specialized agent takes action to
move towards the desired state. When coordination with other
agents is necessary, state transitions are communicated through
the Cluster Manager. Note that a self-healing system cannot
synchronously issue commands to the agents as we cannot
guarantee they will be delivered, instead the Cluster Manager
facilitates communication through state transitions stored in
a state database. The specialized agents are responsible to
asynchronously observe these state changes, act, and update
any needed state. Even if the Cluster Manager is unavailable,
the agents can still make progress on tasks that do not require
coordination. This is conceptually similar to the Propagator
programming model where autonomous machines (agents)
communicate through shared state to create an intelligent
system [10] [11].

V. SUPERVISOR AGENTS

The building blocks of self-healing database systems are a
flexible set of specialized supervisor agents that run on every
node. These agents collect metrics, emit them, and execute
modifications to their respective nodes along with reporting
feedback about the state of the world to the Cluster Manager.
Agents may not always execute modifications, they might
only collect and emit metrics. The composition of multiple

Fig. 1. Goal-Driven Self-Healing Distributed Database Architecture

agents, each with its own specialization, yields a self-healing
system that is simultaneously powerful and understandable.
Importantly, the set of agents is not limited; as new failure
modes are discovered existing agents may either take on the
scope of the failure or a new agent is created.

A. Key Metrics for Service Level Objectives

Like many databases, Apache Cassandra emits a multitude
of metrics that help operators understand what is happening
in the system. Operators can attach dedicated Java Virtual
Machine (JVM) agents to Cassandra and additional specialized
agents to the system which collect these key metrics and
continuously emit them. These metrics allow operators to
establish SLOs over business metrics such as throughput and
latency.

For the purposes of self-healing it is important to separate
metrics that are contextual from critical call to action metrics
emitted by agents. Contextual metrics are useful to capture and
provide as context during a call to action, such as CPU utiliza-
tion. Call to action metrics measure SLO impacting business
metrics and might include metrics such as the system’s error
rate, average latency, and 99th percentile latency. Self-healing
databases only act due to changes in call to action metrics, but
whenever it takes an action based on a call to action metrics
it considers contextual metrics and summarizes the context
to present to operators via dashboards or reports. In practice,
operators often reject intelligent database systems that do not
provide contextual summaries explaining their actions, so a
self-healing database must be able to explain itself.

B. Hardware Supervisor Agents

Apache Cassandra commonly handles individual queries in
under one millisecond. Given this stringent standard, even



small hiccups in a server’s hardware performance can produce
SLO breaking outages. In particular, due to Cassandra’s heavy
usage of memory-mapped I/O, it is extremely vulnerable to
latency induced by drive slowness.

To compensate, a self-healing Cassandra deployment must
constantly interrogate its hardware to ensure key system prop-
erties are holding true. When these properties no longer hold
true, agents work with the Cluster Manager to remove prob-
lematic hardware from service. For example, a new Cassandra
server can run hardware diagnostics on first boot to reduce
latent failures:

Example Startup Hardware Supervisor Agents
• A disk burn-in check uses fio [12] to test drives.
• A network probe checks network connectivity.

If the provisioned hardware cannot meet the stringent disk
latency SLO or the network SLO it is immediately rejected
from the cluster without joining. At Netflix, these two simple
startup checks reduced the number of latent hardware failures
by ejecting degraded hardware from clusters early. Netflix
launches thousands of cloud database instances every week
during backup restoration drills, and around 1% of them fail
to meet SLOs within that week which requires engineers to
debug and remove them from service manually. After preflight
checks were introduced this number was reduced to near zero.

Once a server is running, it must continue to interrogate
the hardware, continuously assessing if the hardware remains
within specification:

Example Continuous Hardware Supervisor Agents
• Failed drive: Perform a small I/O to the data mount.
• Slow drive: Inspect the OS block device service

time excluding queuing time [13]. This differentiates
a slow drive (requires replacement) from an over-
loaded one (requires scale up).

• Processor overload: Inspect the OS CPU scheduler
delays [14] to measure how long threads queue
waiting to run on a core. This gives an accurate
signal for if adding cores would alleviate load.

• Network partitions: Send periodic network heart-
beats.

These specialized agents provide the domain context the
Cluster Manager needs to understand why latency is happen-
ing. Rules-based agents for these small subsets of hardware
failures are sufficient to self-heal most failures; no complex
machine learning model needed. In practice, these kinds of
simple checks detect and recycle thousands of cloud instances
at Netflix every year that otherwise would require manual
human intervention.

C. Software Supervisor Agents

Just as hardware agents can detect certain common hard-
ware faults, specialized software agents can help detect anoma-
lous activity in the Cassandra database itself and act to remedy
the fault. Two simple but useful self-healing agents are:

Example Software Supervisor Agents
• A generic process supervisor such as systemd.

This detects failed processes and restarts them to
preserve availability (emitting logs for context).

• A JVM supervisor such as jvmquake [15] which
detects unstable JVMs and kills them (emitting a
core dump for context). This action plus the process
supervisor restores availability.

These agents are simple, but they self-heal a large number
of real-world faults. Furthermore, the quick reaction time of
localized agents minimizes Mean Time To Recover (MTTR)
when faults do occur to mere seconds. At Netflix, the JVM
supervisor has been particularly impactful, reducing the dura-
tion of “query of death” 1 outages from hours to mere minutes.
These kinds of simple agents, however, operate with safety
guards in place. In particular, crash-recover loops are rate-
limited and when loops are detected, explanatory reports are
issued to operators to aid in debugging.

Another class of software supervisor agents involve super-
vising self-healing tasks of the Cassandra database cluster.

Example Cassandra Supervisor Agents
• An incremental backup agent that exploits LSM

storage engine to provide point-in-time snapshots.
• An incremental repair agent which guarantees

eventual consistency.
• A replacement agent that detects permanently

failed servers and restores data to new cluster mem-
bers from either a durable backup or other replicas.

Examples of software systems that implement these kinds
of Cassandra specific supervisor agents are:

• Netflix’s Priam [16] co-process which configures and
manages Apache Cassandra to run in the AWS cloud.

• The Reaper [17] repair manager from Spotify and The
Last Pickle which handles scheduling repair operations
on Cassandra clusters.

• Soon, the Apache Cassandra Sidecar [18] which will
build these supervisory functions directly into an official
sidecar process for Apache Cassandra.

These software supervisors act as a local machine agent that
both perform these required supervisory functions as well as

1“Queries of death” are when a particularly expensive query is issued
against the cluster that causes it to die a slow death, in Apache Cassandra
and Elasticsearch most frequently due to being asked to load the entire dataset
into heap memory



act as a local agent which the Cluster Manager can instruct to
perform actions.

A key feature of agents which we have found useful in
practice is for them to be engineered to be crash-tolerant
by reacting to serious faults in a crash-only fashion [19]
[20]. Crash-tolerant agents make incremental progress toward
their goals under the assumption they may have to crash and
resume at any time. Crash-only agents choose to handle most
serious faults by explicitly crashing rather than attempting
to recover. We find that crash-only agents exercise crash-
tolerance more frequently and force engineers to externalize
state which increases the likelihood the agents can handle true
faults [21].

Netflix’s initial implementations of repair and backup
agents were not crash-only: they lost their entire progress
after encountering a fault and being unable to recover from
the fault. We found this untenable in practice because faults
proved so common that these agents were not able to complete
their tasks and would have to restart from the beginning
of the task. In practice, this meant that certain large-scale,
typically petabyte-scale, clusters failed weekly to reliably
complete their backups or data repair tasks. After switching
to crash-only implementations which constantly check-pointed
progress state so that the agents could always resume, all
Cassandra clusters were able to successfully backup and repair
regardless of scale.

Choosing a goal-oriented and crash-only architecture for
these local software agents in practice makes the distributed
database significantly better at maintaining a desired goal
state without significant additional complexity. For example,
at Netflix, implementing these semi-intelligent purpose-built
agents reduced operator actions by an order of magnitude.

VI. GOAL-DRIVEN CLUSTER MANAGER

Armed with contextual metadata reported by the specialized
agents, the Cluster Manager is responsible for evaluating the
state of the cluster and taking actions to achieve or maintain
the operator’s desired goal. It also presents operators with a
linear history of every state transition and action taken by
agents. This linear history is critical for the system to be
understandable and, in future work, for anomaly detection.

A. Aggregation and Storage of State

One key role of the Cluster Manager is to aggregate reports
from agents across the fleet into a useful cluster and fleet level
summary. This gives agents a location in which to checkpoint
their state. The Cluster Manager also provides a framework
for agents to save their positions in distributed state machines,
which can be used, for example, to implement locking. This
allows agents to each individually take availability-affecting
actions, while enforcing semantics that keep the database as a
whole healthy.

Internally many distributed databases have their own version
of this control-plane state, for example cluster membership
or schema changes might use strongly consistent operations
based on Raft [22]. The Cluster Manager design intentionally

does not use database specific control-plane storage so as
to minimally couple to the underlying databases the agents
manage.

B. Taking Action to Meet Desired Goals

The Cluster Manager needs a relatively small number of
actions to solve a wide range of database faults. The majority
of complexity is delegated to the specialized agents that follow
purpose-built state machines. As the specialized agents contain
most of the intelligence, high level actions have narrow scope:

Cluster Manager Actions
1) Write a new agent goal.
2) Record a state transition from an agent.
3) Add or remove servers to the cluster.
4) Alert humans.

Assuming a cloud computing environment composed of
virtual servers running a composition of containers (pods) per
instance of the database, the Agent Actions are limited to:

Specialized Agent Actions (in order of growing risk)
1) Actuate a live (JMX) control interface (online)
2) Upgrade a single non-database container (online)
3) Re-image the server to a new machine image
4) Transfer data to another server and exit.
5) Exit the cluster without data transfer

Online actions (Agent Actions #1-2) do not affect database
availability, and so agents can generally perform them with-
out coordinating through the Cluster Manager. Agents must
coordinate through the Cluster Manager’s state functionality
(Cluster Manager Action #2) for any action which stops the
local instance of the database (Agent Actions #3-5). Cassan-
dra’s data distribution algorithm lends itself easily to a state
machine: at any given time, only nodes in a single Cassandra
rack can safely perform offline maintenance.

The agents are programmed to understand which actions
can be used to meet their goals, and always select the lowest-
risk candidate action from the above list. For instance, the
configuration management agent understands that a subset of
properties can be actuated via the live control interface and
will choose to use it instead of re-imaging a server with
new configuration if possible. Another example is both the
repair and backup agents choose to solely interact with online
interfaces as they operate continuously.

Luckily these five actions are simple to choose between,
it is always optimal to choose the least risky option that
allows an agent to meet the goal. Specifically, actuating a
live configuration knob is always safer than changing software
because it is fast and usually safe to revert. Changing a
non-database container is always safer than re-imaging the
machine because every time the database restarts there is risk
to availability [9]. Re-imaging a server in place is always safer



than migrating hardware due to the propensity for hardware
to fail young [23]. The highest risk action an agent can take
to meet a goal is to replace the underlying hardware as it not
only involves new servers which may rapidly fail, but it also
typically involves moving data between drives which provides
an opportunity for data corruption.

As a concrete example, to perform a database software
upgrade of a particular cluster in production, the operator
writes a new desired goal to the state database:

D = goals(
cluster_name = "cass_cluster",
environment = {

deployment="prod"
}

)
D.software.db_version = "3.0.19.8"

The distributed replacement agent notices that the de-
sired database version differs from its local version. The
replacement agent understands that this requires restarting
the database process. This in-turn means that it will take Agent
Action 3 and re-image the server. In fact, any action that
requires a restart of the database process can be simplified to
re-imaging the entire database server in-place, because modern
imaging techniques take roughly the same amount of time
(minutes) as restarting the database process and allows atomic
transitions from one tested state to another [24] [25]. In a
containerized environment this is the equivalent of deploying a
new pod or container of software. A common alternative to re-
imaging is configuration management, but that introduces the
risk of configuration drift and introduces numerous dangerous
mutability seams into every database server, rather than having
a single atomic mutation from one known good server image to
another known good server image. Note that for maintenance
that does not require the database process to restart it is often
preferable to take Agent Action 2 instead as that is lower risk.

Instead of teaching the Cluster Manager how to perform
a safe upgrade of an Apache Cassandra database, the self-
healing architecture delegates that complexity to the agent
which understands the domain specific guarantees and require-
ments. The Cluster Manager merely indicates the new desired
goals.

Another role of the Cluster Manager is to react to unex-
pected situations. The on-instance agent may react to hardware
faults by signaling to the Cluster Manager it is terminating
itself (Agent Action 5). Alternatively, a network fault or cloud
provider action may force-retire a node. In both cases, the
Cluster Manager must launch a new instance and provide
relevant context to the replacement agent so that the
new node can re-constitute state either from backups or from
neighboring replicas.

VII. SAFELY EXPERIMENTING ON PRODUCTION

Even with a fully self-healing database deployment of
Apache Cassandra, it is unwise to rely on the self-healing
production system for finding optimal database settings due

to the potential for availability and durability loss. Instead,
in industry, a common technique is to simulate production as
completely as possible.

The specialized agents described earlier, especially the
backup agent, make simulating production straightforward.
For example, out of many clusters, there are probably a small
number that are truly business critical. In such a case a very
safe experiment can be run:

1) Copy the cluster’s goals document from production to
a testing environment. The self-healing system restores
from backup to an equivalent configuration.

2) Capture live query distribution from production using
audit logs or tracers [26] [27].

3) Apply continuous load that matches the production
query distribution [28].

4) While the load test is running, a chaos agent kills
machines and processes to simulate failure conditions.

Operators typically choose to let these experiments run for
days or weeks as there is no human effort involved and to
ensure that the proposed change will not adversely affect
durability, availability, or performance of the system. It is vital
to have this long testing period because many faults do not
immediately surface.

Once the isolated experiment is complete, a human oper-
ator views the contextual report issued by the self-healing
Cluster Manager and makes the decision to “promote” the
configuration to a production environment. To minimize risk
the Cluster Manager incrementally applies the desired goal to
low priority clusters and then to critical clusters. To apply the
desired goal to a cluster the Cluster Manager first changes the
goals document for a single machine in a single rack, then to
all the machines in a rack, and finally to all machines in all
racks. This gradual roll-out further reduces risk.

VIII. CONCLUSIONS AND FUTURE WORK

We have described a concrete architecture for building self-
healing distributed databases, drawing on real-world experi-
ence with Apache Cassandra. Applying domain expertise, a
relatively small number of rules-based agents can be composed
together to form a self-healing system atop existing database
software. Advanced central planning is not needed beyond
the limited Cluster Manager, which stores desired goal state
and mediates state transitions via the specialized agents. In
practice, we have observed these goal-driven agents reduce
operational incidents both in frequency and duration by an
order of magnitude while simultaneously allowing more rapid
scaling of hardware and innovation in software. In the future
we envision using the state transition history to predict failures
and surface anomalies.

We believe the hierarchical goal and agent architecture
generalizes to any stateful system, with the key qualifier that
database or language specific agents are only composed when
they make sense. Indeed at Netflix we use variations of the
same architecture for most of our business-critical real-time
distributed databases such as Apache Cassandra, Elasticsearch,
EVCache (distributed Memcached) and CockroachDB, but we



only use the jvmquake JVM supervisor agent for the first
two as the other systems are not written in Java.

Finally, we show how to safely experiment on these database
systems without resorting to hard to understand machine
learning models. This cautious approach is taken in industry
because business continuity depends on these systems func-
tioning at close to 100% reliability. No database operator
wants to explain, “the billing database was corrupted because
a black-box model turned on a rarely used database flag which
improved performance but caused silent data corruption in the
entire dataset”. This is one of the many reasons we advocate
for understandable self-healing databases rather than fully self-
tuning ones.

ACKNOWLEDGMENT

We would like to thank the numerous engineers on our
teams for contributing in many ways to the success of this
architecture. At Netflix we would like to specifically acknowl-
edge Josh Snyder for providing significant feedback on the
manuscript in addition to implementing many of the systems
this paper is based on as well as Prudhviraj Karumanchi, Vinay
Chella, Arun Agrawal, Itay Tenne and other team members
that contributed to the systems described herein.

REFERENCES

[1] D. Gunning, “Explainable artificial intelligence (xai),” Defense Ad-
vanced Research Projects Agency (DARPA), nd Web, vol. 2, 2017.

[2] A. Pavlo, G. Angulo, J. Arulraj, H. Lin, J. Lin, L. Ma, P. Menon,
T. Mowry, M. Perron, I. Quah, S. Santurkar, A. Tomasic, S. Toor,
D. V. Aken, Z. Wang, Y. Wu, R. Xian, and T. Zhang, “Self-
driving database management systems,” in CIDR 2017, Conference
on Innovative Data Systems Research, 2017. [Online]. Available:
https://db.cs.cmu.edu/papers/2017/p42-pavlo-cidr17.pdf

[3] A. Lakshman and P. Malik, “Cassandra: A decentralized structured
storage system,” SIGOPS Oper. Syst. Rev., vol. 44, no. 2, p. 35–40, Apr.
2010. [Online]. Available: https://doi.org/10.1145/1773912.1773922

[4] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s highly available key-value store,” SIGOPS Oper. Syst. Rev.,
vol. 41, no. 6, pp. 205–220, 2007.

[5] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed
storage system for structured data,” in Proceedings of the 7th USENIX
Symposium on Operating Systems Design and Implementation - Volume
7, ser. OSDI ’06. USA: USENIX Association, 2006, p. 15.

[6] F. Dabek, E. Brunskill, M. F. Kaashoek, D. Karger, R. Morris, I. Stoica,
and H. Balakrishnan, “Building peer-to-peer systems with chord, a
distributed lookup service,” in Proceedings Eighth Workshop on Hot
Topics in Operating Systems. IEEE, 2001, pp. 81–86.

[7] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil, “The log-structured
merge-tree (lsm-tree),” Acta Inf., vol. 33, no. 4, p. 351–385, Jun. 1996.
[Online]. Available: https://doi.org/10.1007/s002360050048

[8] B. Beyer, C. Jones, J. Petoff, and N. R. Murphy, Site Reliability
Engineering: How Google Runs Production Systems, 1st ed. O’Reilly
Media, Inc., 2016.

[9] J. Snyder and J. Lynch, “Cassandra availability with virtual nodes,”
https://jolynch.github.io/pdf/cassandra-availability-virtual.pdf, 2018, ac-
cessed: 2020-02-22.

[10] A. Radul and G. J. Sussman, “The art of the propagator,” in Proceedings
of the 2009 international lisp conference, 2009, pp. 1–10.

[11] A. Radul, “Propagation networks: A flexible and expressive substrate for
computation,” Ph.D. dissertation, Massachusetts Institute of Technology,
2009.

[12] “Flexible i/o tester,” https://fio.readthedocs.io/en/latest/fio doc.html, ac-
cessed: 2020-02-19.

[13] “Linux i/o statistics,” https://www.kernel.org/doc/Documentation/iostats.
txt, accessed: 2020-02-19.

[14] “Linux cpu scheduler statistics,” https://www.kernel.org/doc/html/latest/
scheduler/sched-stats.html, accessed: 2020-02-19.

[15] J. Lynch and J. Snyder, “Garbage collecting unhealthy jvms,
a proactive approach,” https://medium.com/@NetflixTechBlog/
introducing-jvmquake-ec944c60ba70, accessed: 2020-02-19.

[16] Netflix, “Netflix priam cassandra sidecar,” https://github.com/Netflix/
Priam, accessed: 2020-02-19.

[17] T. L. P. Spotify, “Reaper cassandra repair manager,” https://github.com/
thelastpickle/cassandra-reaper, accessed: 2020-02-19.

[18] T. A. S. Foundation, “Apache cassandra sidecar,” https://github.com/
apache/cassandra-sidecar, accessed: 2020-02-19.

[19] G. Candea and A. Fox, “Crash-only software,” in Proceedings of the
9th Conference on Hot Topics in Operating Systems - Volume 9, ser.
HOTOS’03. USA: USENIX Association, 2003, p. 12.

[20] J. Armstrong, “Making reliable distributed systems in the presence of
software errors,” Ph.D. dissertation, Mikroelektronik och information-
steknik, 2003.

[21] A. Basiri, N. Behnam, R. de Rooij, L. Hochstein, L. Kosewski,
J. Reynolds, and C. Rosenthal, “Chaos engineering,” IEEE Software,
vol. 33, no. 3, pp. 35–41, 2016.

[22] D. Ongaro and J. Ousterhout, “In search of an understandable con-
sensus algorithm,” in 2014 {USENIX} Annual Technical Conference
({USENIX}{ATC} 14), 2014, pp. 305–319.

[23] B. Schroeder and G. Gibson, “A large-scale study of failures in
high-performance computing systems,” IEEE Trans. Dependable Secur.
Comput., vol. 7, no. 4, p. 337–351, Oct. 2010. [Online]. Available:
https://doi.org/10.1109/TDSC.2009.4

[24] J. Snyder, “Rebooting datastores into the future,” https://medium.com/
@NetflixTechBlog/datastore-flash-upgrades-187f1e4ef859, accessed:
2020-02-19.

[25] Netflix, “S3 flash bootloader,” https://github.com/Netflix-Skunkworks/
s3-flash-bootloader/, accessed: 2020-02-19.

[26] A. C. Community, “Audit logging in apache cassandra 4.0,” http:
//cassandra.apache.org/blog/2018/10/29/audit logging cassandra.html,
2018, accessed: 2020-02-21.

[27] J. Lynch, “Cqltrace: A dynamic tracer for viewing cql traffic in real
time,” https://github.com/jolynch/cqltrace, accessed: 2020-02-21.

[28] I. Papapanagiotou and V. Chella, “Ndbench: Benchmarking microser-
vices at scale,” arXiv preprint arXiv:1807.10792, 2018.


